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Abstract—This paper presents a technique for accurately de-
signing maximally flat quarter-wavelength-coupled transmission-
line filters using arbitrary resonant elements. The design pro-
cedure currently used, which is based on the lumped-element
low-pass prototype, yields a response that is only approximately
maximally flat. In addition, the current procedure results in an
inaccurate prediction of the total Q for the filter. The technique
presented in this paper, herein called theQ-distribution (QD)
method, corrects these problems. With the QD method, the
designer chooses the number and type of resonant elements and
the total Q desired. In turn, the designer is provided with the
individual resonator QD, which gives the designer flexibility in
selecting the resonator that is most appropriate.

Index Terms—Bandpass filters, Butterworth filters, maximally
flat magnitude filters, Q, Q distribution, quarter-wavelength-
coupled network, transmission-line resonators.

I. INTRODUCTION

QUARTER-WAVELENGTH-COUPLED filters are the
most widely used transmission-line filter. Furthermore,
maximally flat filters are one of the most important

types of filter designs. Accordingly, it is important to have
a technique for accurately designing maximally flat quarter-
wavelength-coupled filters. Currently, the approach used is
only approximately correct. This paper presents a design
technique, referred to as the-distribution (QD) method, that
yields accurate results for both narrow- and wide-bandwidth
designs.

A general representation of a quarter-wavelength-coupled
filter is shown in Fig. 1. In this figure, each resonator,, is
represented as . This alludes to the fact that a resonator can
be represented by its frequency selectivity or, which is the
basis for the QD method. Note also in Fig. 1 that the source
and load impedances are assumed to be real and equal.

The current method for designing maximally flat quarter-
wavelength-coupled filters is based on the lumped-element
low-pass prototype circuit [1]–[3]. This lumped-element proto-
type (LEP) method has two major problems. First, the response
is not truly maximally flat. There are ripples in the passband
which become larger with lower filters and with filters that
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Fig. 1. Generalized quarter-wavelength coupled filter.

Fig. 2. Problems with the LEP method.

employ a large number of sections. Second, the theoretical total
does not accurately predict the actual total, , which is

an important design parameter. Fig. 2 illustrates both of these
problems. Using the LEP method, a filter was designed to have
a maximally flat response with a total of 2.0. However,
Fig. 2 clearly reveals ripples in the passband of the filter
response. ( is used rather than because it is a more
sensitive indicator of ripples in the passband.) In addition, the

of this actual response is 2.7855, which is 139.3% above the
design value . Also shown in Fig. 2 is the response
of the same filter design using the QD method. Notice that the
response using the QD method is truly maximally flat with a
total of 2.0.

In addition to being accurate, the QD method is easy to
implement. By specifying the total needed for the filter and
the number of resonator elements that can be afforded, the QD
method provides the designer with the individual resonator
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values. With the individual resonator values, a designer
has the freedom to choose the resonator type that is most
appropriate.

The foundation for this design technique was laid by Mum-
ford [4]. Mumford identified the mathematical form of a
maximally flat response for a quarter-wavelength-coupled filter
and provided tables containing admittance values for quarter-
wavelength shorted-stub resonators. This paper extends the
work of Mumford in several ways. First, a general design
approach is provided for designing maximally flat quarter-
wavelength-coupled filters. The QD method is general because
it can be applied using virtually any resonator. Second, a
design process is provided that is directly based on the
specifications a designer has readily available, the number of
resonator sections that can be implemented, and the desired
total . Third, an accurate equation is derived that relates
the individual resonator values to the total of the filter.
Fourth, the method for finding a maximally flat response
for quarter-wavelength-coupled filters is documented. Finally,
while the LEP method has been the accepted method for
designing maximally flat quarter-wavelength coupled filters,
an improved design procedure is offered.

This paper begins by discussing the mathematical form of
the maximally flat response for a quarter-wavelength-coupled
filter. Then, the method used to create maximally flat quarter-
wavelength-coupled filters, i.e., the QD Method, is described.
Specifically, it is shown that using matrices allows
one to solve for the individual resonator values. These
individual resonator values are related to the total of
the filter. Next, calculated tables of individual resonator
values are provided for a range of totalvalues and resonator
sections. Finally, to conclude, an example comparing the
LEP method to the QD method is given. In this example
a five-section quarter-wavelength-coupled filter that employs
quarter-wavelength shorted-stub resonators is created.

II. FORM OF THE MAXIMALLY FLAT RESPONSE

There are an infinite number of maximally flat responses,
but each has the requirement that all derivatives at the resonant
frequency are zero. The general response for a maximally flat
filter has the form [2]

(1)

where represents the number of resonant sections.is the
power available and is the power delivered to the load.
The function depends on the total of the circuit and the
frequency variable. For a lumped-element bandpass filter

(2)

where is the resonant frequency, and and are the
upper and lower cutoff frequencies. The total loadedfor the
filter is . Thus

(3)

It can be shown that all derivatives of (3) with respect to
evaluated at are equal to zero.

For a quarter-wavelength-coupled filter, Mumford [4] iden-
tified the maximally flat form as

(4)

where , is the number of resonators,
and is a constant which depends on the individual res-
onator values. For the special case of using quarter-wavelength
shorted-stubs as resonators, Mumford found that

(5)

where is the normalized characteristic admittance for the
th stub such that

(6)

where is the admittance of the quarter-wavelength coupling
line. It can be shown that the derivatives of (4) with respect
to evaluated at are zero.

III. SOLVING FOR THE MAXIMALLY FLAT RESPONSE

FOR A QUARTER-WAVELENGTH-COUPLED FILTER

Solving for the maximally flat response is a matter of
comparing the general response for an-section quarter-
wavelength coupled filter to the maximally flat form given in
(4). Unfortunately, there is no direct way to find the general
response. As a result, the problem is approached by assuming
that all of the individual resonator elements are quarter-
wavelength shorted stubs and comparing the filter response
to the maximally flat form.

To find the response for an-section quarter-wavelength-
coupled filter with quarter-wavelength shorted-stub resonators,

matrices are used. The response is identified from
the composite matrix. Since each resonant section
and each quarter-wavelength transmission-line section have an

matrix, to find a usable composite matrix it
is necessary to multiply the matrices together and
then collect terms where each term is in a trigonometric form.
Although this approach is valid for finding the response, as the
number of resonator elements used () increases, the size and
complexity of the composite matrix becomes unman-
ageably large. One way to simplify the analysis is to introduce
the variable [5]. This effectively converts the
terms in the composite matrix from a trigonometric
form to a polynomial form which significantly reduces the
mathematical complexity. Another simplification is achieved
by considering the symmetry present in the maximally flat
solution. Specifically, the maximally flat solution imposes a
symmetrical filter structure. By using this structural symmetry,
the number of variables and equations are effectively reduced
by a factor of two.

For quarter-wavelength shorted-stub resonators, comparing
the response of an-section filter to the maximally flat form
results in a solution for the normalized admittance values
for the shorted-stub resonators. To generalize these results,
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the admittance values are converted to individual resonator
values, so that a designer can apply these results to any

arbitrary resonator. Finally, a relation is needed between the
determined individual resonator values and the total
of the filter. This relationship is found by first using (5) to
relate the normalized admittance values to, the coefficient
of the maximally flat form, and then relating to the
total . Unfortunately, a closed-form relation does not exist
between and . However, a numerical solution can be
found, and from the graphical form of this numerical solution,
an extremely accurate “linear” approximation is derived that
relates to in equation form.

The steps described above form the outline to this section.
These same steps are used to generate the tables in Section IV
that are used by designers to create maximally flat quarter-
wavelength-coupled filters. Also in this section, an example is
provided for implementing this method to create a maximally
flat five-section filter. This five-section filter example will be
used again in Section VI when the responses generated by the
QD method and the LEP method are compared.

A. Matrices and the Maximally Flat Form

From the composite matrix of a filter, the transducer
loss for a lossless transmission-line network that
has both source and load resistance equal tois given by

(7)

Furthermore, it can be shown that if the network is symmetric,
then and

(8)

Equating (8) to the form for a maximally flat quarter-
wavelength-coupled filter in (4) yields the following relation:

(9)

B. Analysis Using Quarter-Wavelength
Shorted-Stub Resonators

Since it is not possible to represent a general resonator as
an matrix, it is necessary to choose a resonator that
can be represented as an matrix. Because of its sim-
ple matrix form, the quarter-wavelength shorted-stub
resonator is chosen. The matrix for a parallel quarter-
wavelength shorted-stub resonator of characteristic admittance

is

(10)

where . The matrix for a quarter-
wavelength section of transmission line of characteristic ad-
mittance is

(11)

1) General Form of Solution:For an -section quarter-
wavelength-coupled filter that uses quarter-wavelength
shorted-stub resonators, the composite matrix is
given by

(12)

Multiplying the matrices in (12) and using (8), the general
form of the response for this-section filter is found to be

(13)

where

(14)

and is the admittance for theth quarter-wavelength
shorted-stub resonator.

Finally, the parameters, i.e., admittance values, that make
the filter maximally flat are found by comparing the response
(13) to the maximally flat form (9). Equating the two forms
results in the following system of equations:

...
(15)

with . Since there are equations and unknowns
( ), the system is under-determined. Thus, it is
necessary to choose the value for one and then use (15)
to solve for the other values. It should be noted that the
choice of a value for is not completely arbitrary because
the value chosen fixes the total for the filter. To see this,
note that if the equation for is added to the system of
equations, there would be equations and unknowns, and
thus the system is fully determined. The coefficientis the
same as the coefficient of the maximally flat form , and
is directly related to the total for the filter. The relationship
between and total will be discussed in Section III-E.
Thus, the choice of a value for effectively fixes which
sets the total of the filter.

2) Analysis of a Three-Section Filter:As a simple example
of the above procedure, the characteristic admittance values
are determined for a maximally flat three-section filter using
quarter-wavelength shorted-stub resonators. First, the com-
posite matrix is created. Three quarter-wavelength
shorted stubs coupled by quarter-wavelength line sections
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yield the composite matrix:

(16)

Multiplying the matrices yields (17), as shown at the bottom
of the page.

To find the transducer loss, (17) is substituted into (7) to
obtain

(18)

where

(19)

The solution for , , and that gives a maximally
flat response is found by simultaneously solving

(20)

and is found to be

(21)

Substituting (21) into yields

(22)

Likewise substituting (21) into

(23)

yields

(24)

Thus, as predicted by (4).

C. Simplifications to General Analysis

Although the method described in the previous section is
valid for any number of sections, as the number of sec-
tions becomes large, the complexity of the resulting matrix
and, consequently, the system of equations (15) becomes
unmanageable. However, two simplifications significantly re-
duce the mathematical complexity of the problem. First, the
mathematical complexity of (12) is lessened by converting
this trigonometric form to a polynomial form. Second, since
each section adds one equation to the system of equations
in (15), an -section filter requires the simultaneous solution
of equations. By making use of the filter-structure
symmetry required by the maximally flat solution, the number
of equations is effectively halved.

1) Substitution: Mathematically, it is easier to deal with a
polynomial function than a trigonometric function. Converting
the form of the problem from a trigonometric to polynomial
form is accomplished by using the substitution [5], [6]

(25)

Thus, (10) becomes

(26)

and (11) becomes

(27)

An -section quarter-wavelength shorted-stub resonator fil-
ter can be represented as

(28)

or, after multiplying the matrices for odd, the composite
simplifies to (29) as shown at the bottom of the

following page. For even, the composite simplifies

(17)
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as shown in (30), at the bottom of the page, where
for odd and for even, and

(31)

The maximally flat form is obtained by setting

and

(32)

Once again, the system is under-determined with
equations and unknowns. There is also one unmatched
coefficient, . By arbitrarily choosing one of the admittance
values , the other admittance values, for
, can be found using (32). The value chosen for

determines the coefficient , which is directly related to the
total of the filter.

To show that (32) is the maximally flat solution, note that
applying (32) to (7) sets all polynomial terms less thanto
zero, which yields the following result for the transducer loss:

(33)

or

(34)

which is of the maximally flat form given by (4) with

(35)

In Section III-E it will be shown how and thus, , relate
to the total of the filter.

2) Using Symmetry to Simplify:A symmetrical network
structure implies that the characteristic admittance for the first
stub of a quarter-wavelength shorted-stub filter is equal to
the admittance of the last stub, the second stub admittance is
equal to the second to last stub admittance, and so on. Thus

...
for odd
for even

(36)

Symmetry also imposes the condition on the composite
matrix that the element must equal the element.

That is

(37)

As a result, by imposing symmetry, both the number of
variables (36) and the number of equations (37) are halved.
Thus, the maximally flat solution is found by solving

(38)

A maximally flat response has a symmetrical solution. That
is, the solution of (32) yields the condition given in (36).
Although a formal proof cannot be offered, the validity of this
assertion can be demonstrated. The matrix of the form
given by (30) for a four-section quarter-wavelength-coupled
filter that uses quarter-wavelength shorted-stub resonators is
shown in (39), at the bottom of the following page. Setting

gives the following two equations:

and

(40)

which simply leads to

and

(41)

(29)

(30)
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which leads to the symmetry conditions

(42)

A similar analysis can be performed on any-section quarter-
wavelength-coupled filter with the same result. Specifically,
with , as required for a maximally flat response,
the solution set is the symmetry conditions (36). Conversely,
applying the symmetry conditions (36) results in ,
which is required for a maximally flat response.

D. Generalizing Results from Quarter-Wavelength
Shorted-Stub Resonators to Arbitrary Resonators

At this point, the maximally flat response has been created
for a filter with quarter-wavelength shorted-stub resonators
by using the symmetry conditions (36) and solving (38). To
generalize these results to any resonator, it is necessary to
convert the admittance values into values for each
individual resonator . This is accomplished by using the
relationship for the of a single quarter-wavelength shorted
stub on a transmission line with admittance [7], [8] as
follows:

(43)

Once the individual resonator values necessary for a
maximally flat response are known, the designer may choose
any resonator that operates at the central frequency of the
filter . The designer only needs to know how the of
the resonator relates to the parameters of the resonator. For
example, for a series-connected lumped-element resonator
(which has parameters and ), the is

(44)

where is the resonant frequency andis the inductance.
is found by using the resonant condition

(45)

The relationship between the of the resonator and the
parameters of the resonator can be found mathematically either
by using the fundamental definition of:

Peak Energy Stored
Average Power Lost

(46)

or as follows (for series-connected elements):

(47)

and as follows (for parallel-connected elements):

(48)

where and . These expressions
are derived from the fundamental definition of [9]. These
relationships are also given in [7, p. 414]. If a mathematical
formulation is not possible, the of an individual resonator
can be determined from measuredparameter data [10] or
from another measurement technique [11]–[14].

E. Relation Between Individual Values and Total

The previous discussion has provided the designer with a
method for determining the valid combinations of individual
resonator values for a given number of sections,, that
yield a maximally flat response. The final step is to relate this
QD to the total of the filter, . First, note that in the
process of finding the QD using the under-determined system
of equations (38), one coefficient remained,. Choosing a
value for one of the resonators fixed the value of, and
thus by (35) fixed the value of , the coefficient of the
maximally flat form. Mumford [4] found a direct relation
between and the normalized admittance values for the
specific case of a quarter-wavelength shorted-stub filter (5).
This relationship may be extended to arbitrary resonators by
relating the admittance values to individual values (43),
giving the relation between and the QD as

(49)

Since is the coefficient in the maximally flat form of the
quarter-wavelength-coupled filter in (4), to relate the individual
QD to , it is necessary to only relate and . This is
obtained from the general form of the maximally flat response
for a quarter-wavelength-coupled filter. Equation (4) may be
rewritten as

(50)

where . The total is given by

(51)

where is the resonant frequency, and and are the
upper and lower cutoff frequencies. The lower and upper

(39)
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Fig. 3. QT versusKn for different numbers of sections (n).

frequencies are calculated based on where .
Using (50), this occurs when

(52)

A generalized closed-form solution of (52) is not available.
However, a numerical solution is possible, and an approximate
closed-form solution is derived that is very accurate for most
applications. Numerically solving (52) for a given, , and

, yields two solutions for , , and , which when
substituted into (51) yields the value for . The QD tables
presented in Section IV are indexed by this numerical solution
of .

To derive an approximate closed-form expression for
in terms of , it is necessary to begin with the numerical
solution. From a graph of the numerical solution of versus

for several values of on a – scale, as shown
in Fig. 3, a definite trend can be observed. First, notice that
for all values of , all curves start at a constant value of

. At some point, these curves bend to a
linear slope, eventually reaching a slope of .

Since the point at which the curves bend to a linear slope
is below the range of usable values, , a linear
equation can be developed for the usable portion of the curve
in the following form:

(53)

where is the slope, and is the intercept. By using
two points on each curve that have a large value of,
it is found that all curves have a common intercept point

and a slope of . This leads to
the following linear approximation for the upwardly sloping
portion of the curve as a function of:

(54)

Taking the antilog of both sides yields the following closed-
form approximate relation between and :

(55)

Fig. 4. Comparison of actual to linear approximation forQT versusKn.

Fig. 4 compares the linear approximation given by (54) to
the exact numerical solution given in Fig. 3 for three sections
( ) and ten sections ( ). Notice that for the widely
used range of values (i.e., ), there is excellent
agreement. The largest deviation occurs for small values of

, and increases with the number of resonators.
Substituting (49) in (55) yields

(56)

Equation (56) is a very important result because it relates the
individual QD to the total of the filter, . It is extremely
accurate, achieving greater accuracy at higher values of
and lower values of . For example, a six-resonator-section
filter that has an actual will have a
using (56), and an actual will have a
with (56). To further support the validity of (56), the QD tables
in Section IV provide a column for both actual values of
and the approximate values of given by (56).

As an additional check to the solutions given in (55)
and (56), the results obtained for one resonant section are
examined. Assuming this resonator is a quarter-wavelength
shorted-stub, Mumford’s relation for (5) for is

(57)

Substituting (57) into (55) with yields

(58)

which is the expression for the of a single quarter-
wavelength shorted-stub resonator, as given in (43). Moreover,
for one resonant section, (56) simplifies to

(59)

as expected.
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TABLE I
PROCEDURE FORFINDING THE QD AND QT

F. Relation to the General Maximally Flat Form

The result given in (55) can be used to show that the
form of quarter-wavelength-coupled filters is indeed a general
maximally flat form, i.e., of the form given in (1). Solving
(55) for in terms of yields

(60)

Substituting (60) into (4) yields

(61)

which is of the form given in (1) with

(62)

G. Summary of Procedure for Finding QD

Table I summarizes the procedure for finding the QD of
individual resonators and total for a given number of
sections, .

H. Example: Five-Section Filter ( )

Following the summary given in Table I, an example is
given for designing a maximally flat five-section filter us-
ing the QD method. From (28), the matrix for a
five-section quarter-wavelength shorted-stub resonator filter is
represented as

(63)

Multiplying (63) and collecting polynomial terms gives the
simplified composite matrix:

(64)

If the symmetry conditions (36) are applied such that
and , the coefficients of (64) are

(65)

Setting and yields the
following relation between , ,
and :

(66)
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TABLE II
VALUES FOR THE FIVE-SECTION FILTER EXAMPLE

As expected, there are two equations and three unknowns.
Therefore, a value for one of the may be arbitrarily chosen.
The choice of determines the value of and, thus,
ultimately the total for the filter. Then, (43) is used to
convert these admittance values to the following individual
resonator values:

(67)

which using (56) and symmetry yields the approximate ex-
pression for :

(68)

Putting numbers into this example, letting
, then (66) yields and

. With these values for , , and
, , and thus . Using (67),

, , and . For this
example, to find the value of , (52) is numerically solved:

(69)

to obtain and , which correspond
to using (51). Using the approximation given by
(56), yields . Table II summarizes the results for
this example five-section filter.

IV. TABLES OF RESONATOR VALUES

FOR A MAXIMALLY FLAT RESPONSE

This section presents tables of individual resonatorvalues
needed to yield a maximally flat response. The tables are
organized around the number of resonant sections and.
Each table corresponds to a different number of resonant
sections, i.e., Table III is used for designing a two-section filter
( ), Table IV is for three resonant sections ( ), and so
on from Tables V to XIII for ten resonant sections ( ).
For nine and ten sections, two tables were necessary to convey

TABLE III
QD AND gk VALUES FOR n = 2

TABLE IV
QD AND gk VALUES FOR n = 3

TABLE V
QD AND gk VALUES FOR n = 4

all of the information. Each table is indexed by the total, .
Since lumped-element low-pass prototype filters are typically
given in terms of the values [15], there are columns giving
the corresponding prototype values. There is also a column
with the approximate value of , as calculated using (56).
Finally, a column is provided for the values of ,
which was the value used by Mumford [4].

These tables are arranged around the needs of the designer.
The idea being that the designer chooses the number of
resonant sections and desired. The tables return the



DROZD AND JOINES: MAXIMALLY FLAT QUARTER-WAVELENGTH-COUPLED TRANSMISSION-LINE FILTERS 2109

TABLE VI
QD AND g VALUES FOR n = 5

TABLE VII
QD AND gk VALUES FOR n = 6

TABLE VIII
QD AND g VALUES FOR n = 7

corresponding individual resonator values for the maximally
flat filter. With the individual resonator values, the designer
is free to choose the resonator that is most appropriate for the
given application by relating the individual resonatorvalues
to the parameters of the resonator.

V. THE LUMPED-ELEMENT PROTOTYPE METHOD

The method currently used for generating maximally flat
quarter-wavelength-coupled filters is briefly described, and it
is pointed out why this method is only approximately correct.

The LEP method begins with the lumped-element ladder
network shown in Fig. 5. The form of the response of this
network is

(70)

The corresponding normalized element values ( or
) are given by [3]

(71)
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TABLE IX
QD AND gk VALUES FOR n = 8

TABLE X
QD FOR n = 9

TABLE XI
gk VALUES FOR n = 9

The LEP is transformed to a bandpass prototype by using
the low-pass-to-bandpass transformation in (2), which yields
the response given in (3). To use quarter-wavelength coupling,
it is necessary to replace each series bandpass resonator
with a shunt bandpass resonator and a section of quarter-
wavelength transmission line on each side of the resonator.
This equivalence was originally presented by Kuroda [16],

and the resulting configuration is shown in Fig. 6. Theof
each resonant section is related toin (71) by

(72)

and, in terms of QD, each individual resonator has agiven
by [7]

(73)

Unfortunately, (73) does not result in a maximally flat
response and does not give the correct total. The reason
is that the quarter-wavelength sections of transmission lines
contribute to the filter response. For high totalfilters, this
effect is not as noticeable, but for low total filters, this
selectivity causes ripples in the passband. In addition, since a
quarter-wavelength section of transmission line has selectivity,
it adds to the of the filter. Thus, the total found using (73)
is not the correct total value. It approaches the correct value
only at high total values. The QD method corrects both of
these problems because it implicitly accounts for the selectivity
of the quarter-wavelength coupling lines. The results using the
LEP method versus the QD method are demonstrated by the
example in Section VI.
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TABLE XII
QD FOR n = 10

TABLE XIII
gk VALUES FOR n = 10

VI. EXAMPLE COMPARING THE LEP AND QD METHODS

This section compares the QD and LEP methods through
an example of designing a maximally flat five-section filter. In
doing so, it is demonstrated how to implement both methods.
Also, the results from both methods are compared and it is
pointed out that the LEP method yields a response that is not
truly maximally flat and a total which deviates significantly
from its intended value.

A. Design Specifications

Following the example provided in Section III-H, a five-
section quarter-wavelength-coupled filter is created which has
a total , . For simplicity, quarter-wavelength
shorted-stub resonators that resonate at GHz are used.
This filter will be implemented with source and load imped-
ances of 50 and with main transmission-line impedance

. Table XIV lists the design parameter specifica-
tions. The circuit layout is shown in Fig. 7.

To build the filter using the LEP method, (73) is used to
calculate the appropriate values for. Then, (43) is used to
convert these values into stub impedance values. Table XV

TABLE XIV
DESIGN SPECIFICATIONS

TABLE XV
STUB IMPEDNACE VALUES USING THE LEP METHOD

TABLE XVI
STUB IMPEDANCE UING THE QD METHOD

TABLE XVII
Qi COMPARISON

lists the stub impedance values calculated using the LEP
method.

For the QD method, Table VI is used with the index value
of to find each . Note that these values
match those given in Table II from Section III-H. With these

values, (43) is again used to calculate the stub impedance
values. Table XVI gives the stub impedance values calculated
using the QD method.
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Fig. 5. General low-pass lumped-element filter.

Fig. 6. General lumped-element quarter-wavelength-coupled filter.

Fig. 7. Five-section filter using quarter-wavelength shorted-stubs.

B. Comparison of the Results

Table XVII compares the individual resonatorvalues for
each method. Also, Table XVII shows the value of found
from the actual filter response. These values were found by
locating the upper and lower 3-dB frequencies and then using
(51) to calculate . Figs. 8 and 9 compare the filter responses
of the two methods. Notice that in Fig. 8 the QD method is
completely flat in the passband and that the LEP method has
ripples in the passband. Fig. 9 shows the upper and lower 3-
dB frequencies used to calculate in Table XVII. Overall,
the response using the QD method is practically exact whereas
the response using the LEP method significantly deviates from
the ideal maximally flat response.

VII. CONCLUSION

This paper has presented a technique for accurately de-
signing maximally flat quarter-wavelength-coupled filters. The
current method used—the LEP method—which is based on
the lumped-element low-pass prototype network, inaccurately
predicts the value for the total of the filter and yields a
response that is not truly maximally flat. In this paper, the
technique presented (called the QD method) corrects both of
these problems. With the QD method, the designer chooses
the number of resonant sections and the totalfor the filter.
Using the tables provided or following the method presented,

Fig. 8. Comparison of the passbands for the QD and LEP methods.

Fig. 9. Comparison of the 3-dB points for the QD and LEP methods.

the distribution of individual values is returned to the
designer. With this, the actual choice of resonator is arbitrary.
A five-section filter example was used to demonstrate both
the validity of the QD method and the problems with the LEP
method.
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