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Abstract—This paper presents a technique for accurately de- Z
signing maximally flat quarter-wavelength-coupled transmission- 0 ‘_}LM"’ ‘._m_;
line filters using arbitrary resonant elements. The design pro- o AN
cedure currently used, which is based on the lumped-element [ ‘ \ |
low-pass prototype, yields a response that is only approximately Z Z Z
maximally flat. In addition, the current procedure results in an SOUTCG Q ! Q ||O| Q 0 Q i
inaccurate prediction of the total @ for the filter. The technique N

2 N
presented in this paper, herein called the@-distribution (QD) [ ‘ | I
method, corrects these problems. With the QD method, the 0
designer chooses the number and type of resonant elements an
the total @ desired. In turn, the designer is provided with the

individual resonator QD, which gives the designer flexibility in

selecting the resonator that is most appropriate. Frequency (MHz)

CIFig. 1. Generalized quarter-wavelength coupled filter.
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I. INTRODUCTION

UARTER-WAVELENGTH-COUPLED filters are the s
Qmost widely used transmission-line filter. Furthermoré®” :
maximally flat filters are one of the most important s00
types of filter designs. Accordingly, it is important to have —90.0 4
a technique for accurately designing maximally flat quarter-  —i00.04- - ,
wavelength-coupled filters. Currently, the approach used is —1100- ---—-i-bioot - ‘
only approximately correct. This paper presents a design —!200- o - Q Disiciotion Vood
technique, referred to as tlig-distribution (QD) method, that © - Lnmped Element, Prototype Method
yields accurate results for both narrow- and Wide-bandwidgﬂg_ 2 Problems with the LEP method.
designs.
A general representation of a quarter-wavelength-coupled
filter is shown in Fig. 1. In this figure, each resonatgrjs employ alarge number of sections. Second, the theoretical total
represented a8;. This alludes to the fact that a resonator ca@} does not accurately predict the actual tafglQr, which is
be represented by its frequency selectivity@rwhich is the an important design parameter. Fig. 2 illustrates both of these
basis for the QD method. Note also in Fig. 1 that the sourpeoblems. Using the LEP method, a filter was designed to have
and load impedances are assumed to be real and equal. a maximally flat response with a totg} of 2.0. However,
The current method for designing maximally flat quarteiFig. 2 clearly reveals ripples in the passband of the filter
wavelength-coupled filters is based on the lumped-elemestponse. §;; is used rather tha$,; because it is a more
low-pass prototype circuit [1]-[3]. This lumped-element protasensitive indicator of ripples in the passband.) In addition, the
type (LEP) method has two major problems. First, the respongeof this actual response is 2.7855, which is 139.3% above the
is not truly maximally flat. There are ripples in the passbangksign valueQ; = 2.0. Also shown in Fig. 2 is the response
which become larger with lowe filters and with filters that of the same filter design using the QD method. Notice that the

_ _ _ ~response using the QD method is truly maximally flat with a
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fotal @ of 2.0.
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() values. With the individual resonatd} values, a designer It can be shown that all derivatives of (3) with respect.to
has the freedom to choose the resonator type that is mesaluated atv = wy are equal to zero.
appropriate. For a quarter-wavelength-coupled filter, Mumford [4] iden-

The foundation for this design technique was laid by Muntified the maximally flat form as
ford [4]. Mumford identified the mathematical form of a P on

. . 0 cos" 0

maximally flat response for a quarter-wavelength-coupled filter — =1+ K, ——
and provided tables containing admittance values for quarter- L sin” ¢
wavelength shorted-stub resonators. This paper extends wheeret = mw/2wo = 7 f/2fo, n is the number of resonators,
work of Mumford in several ways. First, a general desigand K, is a constant which depends on the individual res-
approach is provided for designing maximally flat quarteenator values. For the special case of using quarter-wavelength
wavelength-coupled filters. The QD method is general becais®rted-stubs as resonators, Mumford found that
it can be applied using virtually any resonator. Second, a 2
design process is provided that is directly based on the K, = Yar(¥a2 +2) - (Ygn +2)
specifications a designer has readily available, the number of 2
resonator sections that can be implemented, and the desiigtérey,, is the normalized characteristic admittance for the
total @. Third, an accurate equation is derived that relatesh stub such that
the individual resonato€) values to the totaty of the filter. Yyr
Fourth, the method for finding a maximally flat response Yqr = Yo (6)

for quarter-wavelength-coupled filters is documented. Finally, i . ]
while the LEP method has been the accepted method fpereYy is the admittance of the quarter-wavelength coupling

designing maximally flat quarter-wavelength coupled filterdn€- It can be shown that the derivatives of (4) with respect

(4)

(5)

an improved design procedure is offered. to w evaluated at = wo are zero.
This paper begins by discussing the mathematical form of
the maximally flat response for a quarter-wavelength-coupled Ill. SOLVING FOR THE MAXIMALLY FLAT RESPONSE

filter. Then, the method used to create maximally flat quarter- ~ FOR A QUARTER-WAVELENGTH-COUPLED FILTER

Wavelength-coupled filters, i.e., the QD Method, is deSCfibed.Sowing for the maxima”y flat response is a matter of
Specifically, it is shown that usinngCD matrices allows Comparing the genera| response for arsection quarter-
one to solve for the individual resonatdy values. These wavelength coupled filter to the maximally flat form given in
individual resonatory values are related to the toté) of (4). Unfortunately, there is no direct way to find the general
the filter. Next, calculated tables of individual resonafpr response. As a result, the prob|em is approached by assuming
values are provided for a range of togalvalues and resonatorthat all of the individual resonator elements are quarter-
sections. Finally, to conclude, an example comparing thgavelength shorted stubs and comparing the filter response
LEP method to the QD method is given. In this examplg the maximally flat form.
a five-section quarter-wavelength-coupled filter that employsTo find the response for an-section quarter-wavelength-
quarter-wavelength shorted-stub resonators is created.  coupled filter with quarter-wavelength shorted-stub resonators,
ABCD matrices are used. The response is identified from
Il. EFORM OF THE MAXIMALLY FLAT RESPONSE the compositeABC D matrix. Since each resonant section
and each quarter-wavelength transmission-line section have an

There are an |nf|n|t_e number of maxrmal_ly flat reSPONSeI pop matrix, to find a usable composit¢BC D matrix it
but each has the requirement that all derivatives at the resonant

: necessary to multiply thgn ABCD matrices together and
frequency are zero. The general response for a maximally ffat . . .
: then collect terms where each term is in a trigonometric form.
filter has the form [2]

Although this approach is valid for finding the response, as the
P 14 ()2 (1) number of resonator elements used ihcreases, the size and
r, complexity of the compositel BC'D matrix becomes unman-
ageably large. One way to simplify the analysis is to introduce
the variablep = —jcot 6 [5]. This effectively converts the
terms in the compositel BC' D matrix from a trigonometric
form to a polynomial form which significantly reduces the
mathematical complexity. Another simplification is achieved
wo w W w W by considering the symmetry present in the maximally flat

< ) = QT< ) (2)  solution. Specifically, the maximally flat solution imposes a

symmetrical filter structure. By using this structural symmetry,

wherewy is the resonant frequency, ang andw; are the the number of variables and equations are effectively reduced
upper and lower cutoff frequencies. The total loadgtbr the by a factor of two.

wheren represents the number of resonant sectidiss the
power available and?;, is the power delivered to the load.
The function{2 depends on the totd) of the circuit and the
frequency variable. For a lumped-element bandpass filter

0=

W — W1 \(Wo W

filter is Q7. Thus For quarter-wavelength shorted-stub resonators, comparing
on the response of an-section filter to the maximally flat form

B =1+ (QT)2"<1 - ﬂ) . (3) Tresults in a solution for the normalized admittance values

Py, wo W for the n shorted-stub resonators. To generalize these results,
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the admittance values are converted to individual resonatorl) General Form of SolutionFor an n-section quarter-
Q) values, so that a designer can apply these results to amgvelength-coupled filter that uses quarter-wavelength
arbitrary resonator. Finally, a relation is needed between thleorted-stub resonators, the compostd3CD matrix is
determined individual resonatap values and the totaly given by
of the filter. This relationship is found by first using (5) to
relate the normalized admittance valuegifg, the coefficient A B 1 0 cos®  jo—r
of the maximally flat form, and then re'latm@fn to the . {C D} = {—lecote 1} o Yo
total . Unfortunately, a closed-form relation does not exist 1 JYosin®  cosé
betweenk,, and Qr. However, a numerical solution can be P .sinf
found, and from the graphical form of this numerical solution, . { . 1 0} I J Yo
an extremely accurate “linear” approximation is derived that —J¥grcotf 1 7Ypsin@  cosf
relateskK,, to Qr in equation form. 1 0

The steps described above form the outline to this section. g [—ancot 9 1}-
These same steps are used to generate the tables in Section IV ¢

that are used by designers to create maximally flat quarterultiplying the matrices in (12) and using (8), the general

wavelength-coupled filters. Also in this section, an example fi§rm of the response for this-section filter is found to be
provided for implementing this method to create a maximally

.sin#

(12)

flat five-section filter. This five-section filter example will be Po 14 cos®™ @ n 2 g
used again in Section VI when the responses generated by the P “0 e ™ cos
QD method and the LEP method are compared. T ay cos?™D g gin? 6+, .-
+ ap_q cos? 0 sin?(*"D) ¢ (13)

A. ABCD Matrices and the Maximally Flat Form

From the compositel BC D matrix of a filter, the transducer where
loss L; = P,/ Py, for a lossless transmission-line network that
has both source and load resistance equdtés given by a; = f(Yq1, -+, Ygn) (14)

2

& =1 +1 (A— D)2 _ <£ _ ZoC> . (7) and Y, is the admittance for theth quarter-wavelength
Pr 4 Zo shorted-stub resonator.

Furthermore, it can be shown that if the network is symmetric, Finally, the parameters, i.e., admittance values, that make

then A = D and the filter maximally flat are found by comparing the response

(13) to the maximally flat form (9). Equating the two forms

2
Lo =1+ L_(B_ ZoC ) |. (8) results in the following system of equations:
Fr 4 Zo
=0
Equating (8) to the form for a maximally flat quarter- Z; -0
wavelength-coupled filter in (4) yields the following relation: ) (15)
Py 1 B 2 cos?” 6 L 0
=14+ |=5=-%C) | =1+K, . On—1 =
P, 4 <Z0 0 ) sin® 6 ©)
with a9 = K,,. Since there are—1 equations and unknowns
Shorted-Stub Resonators necessary to choose the value for drjg and then use (15)

to solve for the othen — 1 values. It should be noted that the

Since it is noF pgsglble to represent a general resonatorc%%ice of a value fod’;; is not completely arbitrary because
an ABCD matrix, it is necessary to choose a resonator that

can be represented as aBCD matrix. Because of its sim- flle value chosen fixes the tot@ for the filter. To see this,
ple ABCD matrix form, the quarter-wavelength shorted—stug
resonator is chosen. TheBC D matrix for a parallel quarter-
wavelength shorted-stub resonator of characteristic admittal
Y, is

ote that if the equation fot, is added to the system of
guations, there would be equations anch unknowns, and
thus the system is fully determined. The coefficiegtis the
"W&ne as the coefficient of the maximally flat fof, and K,

is directly related to the total for the filter. The relationship
{A B} _ { 1 0} (10) betweenk,, and totalQ will be discussed in Section IlI-E.
C D —jYcotf 1 Thus, the choice of a value far,; effectively fixesag which

whered = (r/2)(w/wp). The ABCD matrix for a quarter- sets the totak) of the filter.

wavelength section of transmission line of characteristic ad—2) Analysis of a Three-Section F|Iten@\_s§15|mplt_a example
mittance Y, is of the above procedure, the characteristic admittance values

sin 0 are determined for a maximally flat three-section filter using
[A B} cos 0 j

j quarter-wavelength shorted-stub resonators. First, the com-
c Dl ™. . Yo |. (11) posite ABCD matrix is created. Three quarter-wavelength
JYosind  cos ¢ shorted stubs coupled by quarter-wavelength line sections
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yield the compositeABC'D matrix: yields
. sin @ Y2 Y3 Y4 Y5 YG
A B] 1 0]| cos¢  J— Ks=4 L +12° 5 +13 8 +6-4% 152 (29
C D| |—jYcotf 1 0 6 6 6 Yy Yy
1 jYgsiné  cosé
«in 6 Thus,agp = K3 as predicted by (4).
[ 1 0} cos 0 J v
—jYg2cotd 1 Yo sin 6 COSOQ C. Simplifications to General Analysis
1 0 Although the method described in the previous section is
' {_qug cot 0 1}- (16) valid for any number of sections, as the number of sec-

o _ _ tions becomes large, the complexity of the resulting matrix
Multiplying the matrices yields (17), as shown at the bottoraind, consequently, the system of equations (15) becomes

of the page. unmanageable. However, two simplifications significantly re-
To find the transducer loss, (17) is substituted into (7) uce the mathematical complexity of the problem. First, the

obtain mathematical complexity of (12) is lessened by converting
P cost @ 4 o 1 . o this trigonometric form to a polynomial form. Second, since
P 1+ao G2 g T cos 0 +ay cos” 6 sin” 0 (18) each section adds one equation to the system of equations

in (15), ann-section filter requires the simultaneous solution

of n — 1 equations. By making use of the filter-structure

" 1 <qu + Y2+ Y3 n Yo Y +2Y, 1Y 3 +YaYos symmetry required by the maximally flat solution, the number
0=7
4

Yo Y$ of equations is effectively halved.
2 1) p Substitution: Mathematically, it is easier to deal with a
Y YyaVys , . . . ; ,
3 polynomial function than a trigonometric function. Converting
% he f . : :
) the form of the problem from a trigonometric to polynomial
a _1(2Y = 2Ys n YpoVis — Y Yoo form is accomplished by using the substitution [5], [6]
L7y Yo V2 .
9 p = —jcoté. (25)
gy = L(Yz=Yu = Ve (19)
4 Y5 ) Thus, (10) becomes
The solution forY,;, Y2, andY,3 that gives a maximally A B| |1 0 (26)
flat response is found by simultaneously solving C D| |pYy 1
ap =0 and (11) becomes
az =0 (20)
A B .y P 3
and is found to be {C D} =jsind Yo |. (27)
Yo p
Yo =2Y,

An n-section quarter-wavelength shorted-stub resonator fil-

Ygs =Yg 1) ter can be represented as
Substituting (21) intazg yields 1
< A B . _ 1 0|17 -
YAV vd o vh o ¥g ERIRCE e P N
_ 5 D Y,
a0—4y—§+12yig+13yié+6£)5+oy—((;6. (22) ¢ pPYg Yo p
1
Likewise substituting (21) into [ 1 0} R { 1 0} (28)
T (Y0 (2 4) o v
K;= Yo \ Yo Yo (23) or, after multiplying the matrices forn odd, the composite
2 ABCD simplifies to (29) as shown at the bottom of the

following page. Fom even, the compositd BC D simplifies

Y, 2Y, Y. »Y, 2o + Y.
<1 i —;0 @y q;02q3> cos? 6 —sin? @ j % cos 0 sin 6
J(2Yo + Y1 + Yy3) cos 6 sin 6 — j <qu + Yy2 + Y3+ (17)

Y Yoo +2Y1 Y3 + YV n Y1 YgoYos

2 +Yp n Yo Yoo
Yo Y2

Yo i

) cot 6 cos? 8 <1 + ) cos? 6§ —sin?
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as shown in (30), at the bottom of the page, where=
(n+1)/2 for n odd ands = n/2 for n even, and

Yo Y,
A =f 22, .. ﬂ)
(53
Y1 Y,
Bi=f3£, ..., ﬂ)
(S
Y Y,
C;=f 22, ..., ﬂ)
(3
Yo Y,
D, = L7...7ﬂ>_ 31
f(YO ¥ (1)
The maximally flat form is obtained by setting
and
YOBi:g, Vi=1,-,s—1 (32)
Yo

Once again, the system is under-determined with 1
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2) Using Symmetry to SimplifyA symmetrical network
structure implies that the characteristic admittance for the first
stub of a quarter-wavelength shorted-stub filter is equal to
the admittance of the last stub, the second stub admittance is
equal to the second to last stub admittance, and so on. Thus

Yo =Y
Yoo = Yy(n-1)
: (36)
Yiitn-1)/21 = Yq[(n+1)/2), forn odd
Yo(ns2) = Yqin+2)/2], for n eve

Symmetry also imposes the condition on the composite
ABCD matrix that theA element must equal th® element.
That is

A, =D, Yi=1,- .-

,s—1. (37)

As a result, by imposing symmetry, both the number of
variables (36) and the number of equations (37) are halved.
Thus, the maximally flat solution is found by solving

YoB: = Ci/Yy Vi=1,+-+,s—1. (38)

equations andr unknowns. There is also one unmatched
coefficient,C,. By arbitrarily choosing one of the admittance A maximally flat response has a symmetrical solution. That

valuesY,,;/Ys, the other admittance value¥,;/Y, for j #
i, can be found using (32). The value chosen igf/Yy

is, the solution of (32) yields the condition given in (36).
Although a formal proof cannot be offered, the validity of this

determines the coefficiert,, which is directly related to the assertion can be demonstrated. h8C D matrix of the form

total @ of the filter.

given by (30) for a four-section quarter-wavelength-coupled

To show that (32) is the maximally flat solution, note thdilter that uses quarter-wavelength shorted-stub resonators is

applying (32) to (7) sets all polynomial terms less thé&nto

shown in (39), at the bottom of the following page. Setting

zero, which yields the following result for the transducer lossi = D gives the following two equations:

Po . 1 s n—1 (—1)0517” 2
PL—1+4{ |:(JSIH9) Y,
An—2 12
—J Cs n : n—
=1 + 47Yb2 COt2 9 S1n 2( 1) 9 (33)
or
Py C? cos? @
— =1 s — 34
Pr, * 4Y§¢ sin’ 6 (34)
which is of the maximally flat form given by (4) with
02
K, =—=%. 35
"= (35)

3+Y +Yu=3+Y+Ys
and
14+ Y +2Y3 +3Y 4+ YoYi3 +2Y Y,
+ 2Y3Yqu + Yoo YoaYou
=14+3Yn +2Ype + Y3 +2Yn Y + 2V Y3

+ Y2 Yq3 + Y1 YooYz (40)

which simply leads to
Yo =Y =Yp—Ygs
and

0=3(Yq = Yoa) + (Yg2 — ¥g3) + Yoo Yoa(¥g1 — You)

In Section I1I-E it will be shown howé,, and thusC,, relate + 2Yy3(Yg1 — Yyu) +2Y2 (Y1 — Yiu)
to the total@ of the filter. (42)
A B — (j sin 9)"‘1 1 +A1p2 +A2p4 4. +As_lpn—l Blp+sz3 4. +Bs—1p"_2 29)
¢ p|~V Cip+Cop® + -+ Comp" > + Cop® 1+ Dip* + Dop* + -+ + D,y p*~!
A B _ (g gyt Arpt + Agp® 4+ A pt Tt 1+ Bip? 4 Bop* + -+ - 4 Bs—1p" 2 (30)
¢ p]~VY 1+ C1p? + Cop* + -+ Comyp" 2 + Cop"  Dipt + Dop® + -+ Dy_yp=
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which leads to the symmetry conditions and as follows (for parallel-connected elements):
Y1 =Y, B
qu _Yq4 Q=|-—— 2 (48)
q2 = X43. (42) 2Gpar dw w=w
A similar analysis can be performed on amsection quarter- \yhere Ree = 2% and Gpay = 2Yp. These expressions

wgvelength-coupled filt(_er with the same result. Specificallyye derived from the fundamental definition Qf[9]. These
with A = D, as required for a maximally flat responseye|ationships are also given in [7, p. 414]. If a mathematical
the solution set is the symmetry conditions (36). Converselyrmyjation is not possible, the of an individual resonator
applying the symmetry conditions (36) results i = D, can be determined from measurédparameter data [10] or
which is required for a maximally flat response. from another measurement technique [11]—[14].

D. Generalizing Results from Quarter-Wavelength

! E. Relation Between Individud) Values and Tota
Shorted-Stub Resonators to Arbitrary Resonators @ v

The previous discussion has provided the designer with a

At th_|s pom_t, the maximally flat response has been Creat?rﬁjethod for determining the valid combinations of individual
for a filter with quarter-wavelength shorted-stub resonat

(0) 8 . .
. " X sonator() values for a given number of sections, that
by using the symmetry conditions (36) and _sqlvmg (38). Tlr|eId a maximally flat response. The final step is to relate this
generalize these results to any resonator, it is necessar

. . Qﬁs to the total@ of the filter, Q7. First, note that in the
convert the admittance values,; into @ values for each f findi : :
o RS . . the QD th der-det d syst
individual resonator};. This is accomplished by using theprocess of finding the QD using the under-determined system

relationship for thely of a single quarter-wavelength shorteqcl)f equations (38), one coefficient remainéd,. Choosing a

. ; . ) alue for one of the resonators fixed the value(f, and
stub on a transmission line with admittangg [7], [8] as thus by (35) fixed the value ok, the coefficient of the
follows: v

maximally flat form. Mumford [4] found a direct relation
Q; = Yy — WZO_ (43) betweenk, and the normalized admittance values for the
8Yo 87y specific case of a quarter-wavelength shorted-stub filter (5).
Once the individual resonato) values necessary for aThis relationship may be extended to arbitrary resonators by
maximally flat response are known, the designer may chod&éating the admittance values to individu@l values (43),
any resonator that operates at the central frequency of #i#ing the relation betweeik’,, and the QD as
filter wy. The designer only needs to know how thke of o N2
the resonator relates to the parameters of the resonator. For <8)2" Q1 (QQ + Z) (Qn + Z)

example, for a series-connected lumped-element resonator £» = 5 (49)
(which has parameters and C), the (¢ is
Q; = wolL (44) Since K, is the coefficient in the maximally flat form of the
2Zo quarter-wavelength-coupled filter in (4), to relate the individual
wherew is the resonant frequency addis the inductance. QD to Qr, it is necessary to only relat&,, and Q. This is
C is found by using the resonant condition obtained from the general form of the maximally flat response
1 for a quarter-wavelength-coupled filter. Equation (4) may be
=——. 45 i
oo’ (45) rewritten as
The relationship between th@ of the resonator and the Pr = ;Qn (50)
parameters of the resonator can be found mathematically either Fo 1+ K, cos™ ¢
by using the fundamental definition ©f: sin? 6
0=w Peak Energy Stored (46) Whered = mw/2wo. The total@ is given by
0 Average Power Lost wo
or as follows (for series-connected elements): Qr = Wo — Wy (51)
Q= { o z_X} (47) wherew is the resonant frequency, ang andw; are the
2Rser Ow |,y upper and lower cutoff frequencies. The lower and upper
(3+ Yoo + Yo )pt
(14 Y2 + 2Yy3 4+ 3Yqu + Yo Yat 1+ Bp?
A B . 1 |2 Yes + 2Y 3V + Yo Y3 Yoa)p?
|:C D:| — (] sin 9)4 1 qz+q gs-q qz+g9s5-4q (39)
(3+Yq +Y)pt

14 C1p?® + Cop* (14 3Yy1 + 2V + Yoz + 2Yn Yoot
2Y,1 Yy + Yo Yys + Y1 Yo Vis)p®
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‘ : W :‘lolog",K,,):
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,,,,,,,,, -5 J ‘ ' ;
e—n-3 A—-n==6 7(;1* i), An - ?)T});;ux
fo—n=10; x—n = 15; o(n —10); x(n = 10) Approx. |
Fig. 3. Qp versusKy for different numbers of sections:}. Fig. 4. Comparison of actual to linear approximation @y versusk,.
frequencies are calculated based on wheyg/'l, = 1/2. Fig. 4 compares the linear approximation given by (54) to
Using (50), this occurs when the exact numerical solution given in Fig. 3 for three sections
(n = 3) and ten sections(= 10). Notice that for the widely
2 W 2n w . .
sin® {5~ ) = K, cos 2 (52) used range of); values (i.e.Qr > 1.0), there is excellent
0 0

agreement. The largest deviation occurs for small values of
A generalized closed-form solution of (52) is not availablek,,, and increases with the number of resonators.

However, a numerical solution is possible, and an approximateSubstituting (49) in (55) yields

closed-form solution is derived that is very accurate for most

applications. Numerically solving (52) for a given wg, and 0, (Q2 n E) (Qn N I) 1/n
K, yields two solutions forw, w», and w;, which when Qr =2 4 4 (56)
substituted into (51) yields the value f@);. The QD tables 2

presented in Section IV are indexed by this numerical solution

of Qr. Equation (56) is a very important result because it relates the

To derive an approximate closed-form expression@ individual QD to the totak of the filter, Q. It is extremely
in terms of K, it is necessary to begin with the numericahccurate, achieving greater accuracy at higher valueg;of
solution. From a graph of the numerical solution/of versus and lower values of.. For example, a six-resonator-section
Qr for several values of. on alog;-log;, scale, as shown filter that has an actua; = 50.0 will have aQz = 50.001
in Fig. 3, a definite trend can be observed. First, notice thaéing (56), and an actugl; = 1.0 will have aQ; = 1.048
for all values ofn, all curves start at a constant value ofyith (56). To further support the validity of (56), the QD tables
10 log;p Qr = —3. At some point, these curves bend to @ Section IV provide a column for both actual values@f
linear slope, eventually reaching a slopelg®n. and the approximate values @ given by (56).

Since the point at which the curves bend to a linear slopeAs an additional check to the solutions given in (55)
is below the range of usablé,, values, K, < 1, a linear and (56), the results obtained for one resonant section are
equation can be developed for the usable portion of the curgamined. Assuming this resonator is a quarter-wavelength

in the following form: shorted-stub, Mumford’s relation fdk,, (5) for n =1 is
y=mx+b (53) 2
| o | m=<5ﬂ. (57)
where m is the slope, and is the intercept. By using 2Yo

two points on each curve that have a large valuekof, o ] } .

it is found that all curves have a common intercept poirubstituting (57) into (55) witm = 1 yields

b = 10 log,, (w/4) and a slope ofn = 1/2n. This leads to 2YoL

the following linear approximation for the upwardly sloping Qr = 8Yq (58)
portion of the curve as a function ef: 0

10 log, o (K,) T which is the expression for th&) of a single quarter-
10 logyo (Q1) = + + 10 logy (Z) (54)  wavelength shorted-stub resonator, as given in (43). Moreover,

for one resonant section, (56) simplifies to
Taking the antilog of both sides yields the following closed- 56) P

form approximate relation betweds,, and Q: Or = O, (59)

™
Qr = K" (55)

as expected.
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TABLE |
PROCEDURE FORFINDING THE QD AND Q7
Step Procedure
1 Choose number of sections, n
2 Create composite ABCD matrix using (28)
3 For each matrix element, collect polynomial terms
4 Apply symmetry conditions (36)
5 Choose one admittance value, Y,
6 Solve for other admittance values using (32)
7 Convert admittance values, Y, to Q values, (J;, using (43)
8 Find (r from individual @ values using (56)

F. Relation to the General Maximally Flat Form If the symmetry conditions (36) are applied such that =

The result given in (55) can be used to show that thas @ndYg = Yy, the coefficients of (64) are

form. of quarter—wavel'ength—coupled f|Ite.rs is !ndeed a ge_nerrj o 4Y 1 +4Y +2Ys 2V Yoo + YyoYys
maximally flat form, i.e., of the form given in (1). Solving 41 =D =6+ Yo Y2

. . 0
(55) for K, in terms of @ yields AY,1 + 4V + 2Y3

4 2n AQ :D2 =14+ Y.
K, = |:_ QT:| . (60) 2 0
T N 2Y5 +6Y1 Yo +4Y 1Yy + 3Y Yy
Substituting (60) into (4) yields Ys
4 2n LYo + YV 4V Yoo Yos
P ) <; Qr cos 9) o 2 Y3
T 7 L YaYEYe
4
which is of the form given in (1) with ¥y
4 B == 12k
— Qr cos 0 'Y, Y§
_ T
=" 62) 4 eYp+dVu DR ARV YAV
2= ?0 Y02 Yb?) Ybﬁk
G. Summary of Procedure for Finding QD O =4Yy +2Y + Y3
Table | summarizes the procedure for finding the QD o0, =4Y;, + 12Y,; + 6Y2 + 2Y 3
;nedé;gjﬁsail resonators and total for a given number of . 4y(121 + 8 Yoo + 4V Y3 + 2V 5 Y3
1 . YE)
2
H. Example: Five-Section Filtem(= 5) + Do +;K11K12K13
0

Following the summary given in Table |, an example is,,
given for designing a maximally flat five-section filter us-C3 = 2Yar + a2 + Vs

2 2
ing the QD method. From (28), thd BCD matrix for a n AV +2Y55 + 8Y 1 Yop +4Yq1 Yoz + 2Y g2 Y8
five-section quarter-wavelength shorted-stub resonator filter is Yo
represented as N AY Y} +4Y A Ys + YA 3 +6Y 1Y 0Ys
1 YZ
A Bl _ (4 sin 6)* L 0P 5 Y2V +4Y Y Y3 +2Y Y33
¢ D PYa 1]y » + v
v 0
1 2772
1 0 P A 1 0 63) +%ZY(13. (65)
pPYp 1 O Y 1) Yo

Yo p

Setting B1Yo = C1/Yy and ByYy = /Y, yields the
E\Tollowing relation betweenYy, /Yy = g1, Yp2/Yo = yg2s
and Yg3/Yo = yga:

Multiplying (63) and collecting polynomial terms gives th
simplified compositeABC D matrix:

[AB

=(j sin )*
¢ D:| (J ) —1+3yq1+\/1+10yq1+5y31

[ 14+ Ap? + Agp? Bip + Byp? Yq2 = 5
Cip+ Cop® + C3p® 1+ Dip? + Dop* | /
(64) yq?) =-1 + yql + 1 + 10yq1 + 5931- (66)




2108 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 12, DECEMBER 1997

TABLE I TABLE I
VALUES FOR THE FIVE-SECTION FILTER EXAMPLE QD AND g VALUES FORN = 2
Value Qr Q1 Qr App. | 10log;g Kn g1
0.6 || 0.09696 ]| 0.41366 1114 0.3232
Yq_(chosen) | 1.2680 0.8 || 0.2414 || 0.70407 | -1.899 || 0.6035
Yq2 0.4141 1 |[0.3757 || 0.93400 3.010 0.7513
Ya3 0.3075 2 1.056 1.9727 16.00 1.056
Cs 225.136 3 1.752 29824 73.18 1.168
Ky [12671.6 o R
Qi 0.3097 10 || 6.686 9.9948 44.19 1.337
Q2 0.9483 15 | 10.22 14.997 51.24 1.363
Qs 1.2772 20 || 1375 19.997 56.24 1.375
Qr 2.0 30 || 20.82 29.998 63.28 1.388
Qr (approx.) | 2.0201 40 | 27.89 38.099 68.28 1.395
50 || 34.96 49.999 72.16 1.399
100 [[ 70.32 99.999 84.20 1.406
As expected, there are two equations and three unknowns.
Therefore, a value for one of th¢; may be arbitrarily chosen. TABLE IV
The choice ofY,; determines the value of’; and, thus, QD AND gi VALUES FORmT = 3
ultimately the total@ for the filter. Then, (43) is used to Qr Q1 Q- Q7 App. | 10log,, K, a1 92
convert these admittance values to the following individuab.6 ] 0.04745 | 0.09489 I 0.51818 -10.84 0.1582 [ 0.3163
resonatorQ) values: 0.8 || 0.1244 [ 0.2488 || 0.77653 | -0.2960 || 0.3110 | 0.6220
1 || 0.2048 | 0.4095 || 0.98954 6.021 0.4095 | 0.8190
Q1 = Iy L 2 || 0.6581 | 1.316 1.9989 24.34 0.6581 | 1.316
e 3 1.141 | 2.283 2.9997 34.92 0.7609 | 1.522
O = [ Yo 5 2.128 | 4.256 4.9999 4823 08511 | 1.702
874 7 3122 | 6.244 7.0000 57.00 0.8920 | 1.784
Qs = E (67) 10 || 4.618 | 9.235 10.000 66.30 0.9235 | 1.847
3= gYs 15 || 7.114 | 14.23 15.000 76.86 0.9486 | 1.897
i , i , 20 || 9.612 | 19.23 20.000 81.36 0.9612 | 1.923
which using (56) and symmetry yields the approximate ex3g [ 1261 | 29.22 || 30.000 9492 || 0.9741 | 1.948
pression forQ;: 40 || 19.61 | 39.22 40.000 102.4 0.9805 | 1.961
, s 50 || 24.61 | 49.22 50.000 108.2 0.9844 | 1.969
7r 7 7 100 || 49.61 | 99.22 100.00 126.3 0.9922 | 1.984
QA (Q+7) (@ +3)(@+7)
Qr=2 . (68)
TABLE V
QD AND gi. VALUES FORT = 4
Putting numbers |n_to this example, lettig, /Yy = y,1 = Or O; roR Or App. | T0Tog,; Ko o %
1.2680, then (66) yieldsYyy/Yo = y;» = 0.4141 and 56 0.02387 [ 0.07030 || 0.5799 | -10.54 | 0.07955 | 0.0543
Y,3/Yo = g3 = 0.3075. With these values foy,1, 742, and 0.8 |[0.06757 | 0.1940 || 0.81551 1.307 0.1689 | 0.4850
Y3, C3 = 225.136, and thusK; = 12671.6. Using (67), _1 || 0.1188 | 0.3336 || 1.0185 9.031 0.2376 | 0.6673
Ql = 0.3097, QQ = 0.9483, and Q3 — 1.2772. For this 2 0.4412 1.161 2.0121 32.69 0.4412 1.161
example, to find the value 52) is numerically solved: 3 0.8016 | 2.052 3.0084 46.66 0.5341 | 1.368
pie, apr, (52) y * 75 |[ 1549 | 3.873 || 5.0051 64.35 0.6195 | 1.549
T ow T ow 7 2306 | 5.710 7.0037 76.02 0.6589 | 1.631
02 10
sin <— —) = 12671.6 cos <— —) (69) 10 || 3448 | 8473 10.003 88.40 0.6896 | 1.695
2 wo 2 wo 5 | 5.357 | 13.09 || 15.002 1025 0.7143 | 1745
to obtainw, /woy = 1.25 andw; /wo = 0.75, which correspond 20 )| 7268 | 17.70 20.001 112.5 0.7268 } 1.770
. . . _ 30 || 11.09 | 26.94 30.001 126.6 0.7395 | 1.796
to @r = 2.0 using (51). Using the approximation given by 4511103 | 36.18 || 40.001 1366 || 0.7459 | 1.809
(56), yields@Qr = 2.0201. Table 1l summarizes the results forso 1874 | 45.41 50.001 1443 0.7498 | 1.817
this example five-section filter. 100 || 37.88 | 91.61 100.00 168.4 0.7575 | 1.832

IV. TABLES OF RESONATOR ) VALUES

all of the information. Each table is indexed by the t@pal) .
FOR A MAXIMALLY FLAT RESPONSE

Since lumped-element low-pass prototype filters are typically
This section presents tables of individual resonétaalues given in terms of they, values [15], there are columns giving
needed to yield a maximally flat response. The tables abte corresponding; prototype values. There is also a column
organized around the number of resonant sections@pd with the approximate value af)r, as calculated using (56).
Each table corresponds to a different number of resondfihally, a column is provided for the values v log,, £,
sections, i.e., Table Il is used for designing a two-section filterhich was the value used by Mumford [4].
(n = 2), Table IV is for three resonant sections+£ 3), and so These tables are arranged around the needs of the designer.
on from Tables V to XIII for ten resonant sections £ 10). The idea being that the designer chooses the number of
For nine and ten sections, two tables were necessary to conkegonant sections and@r desired. The tables return the
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TABLE VI
QD AND g, VALUES FORn = 5
Qr [*}\ Q2 Qs Qr App. | 10log,o K» a1 g2 g3
0.6 J| 0.01217 | 0.04702 | 0.06972 || 0.62051 -10.23 0.04055 | 0.1568 | 0.2324
0.8 || 0.03769 | 0.1383 | 0.2012 0.83983 2.910 0.09423 | 0.3457 | 0.5029
1 0.07130 | 0.2496 | 0.3565 1.0363 12.04 0.1426 | 0.4991 | 0.7131
2 0.3097 | 0.9483 1.277 2.0201 41.03 0.3097 | 0.9483 | 1.277
3 0.5916 1.719 2.255 3.0136 58.40 0.3944 | 1.146 1.503
5 1.187 3.306 4.238 5.0082 80.46 0.4748 1.323 1.695
7 1.795 4.911 6.232 7.0059 95.04 0.5129 | 1.403 | 1.780
10 2.715 7.328 9.226 10.004 110.5 0.5430 | 1.466 | 1.845
15 4.254 11.37 14.22 15.003 128.1 0.5672 | 1.515 | 1.896
20 5.796 15.41 19.22 20.002 140.6 0.5796 1.541 1.922
30 8.884 23.49 29.22 30.001 158.2 0.5922 1.566 1.948
40 11.97 31.58 39.22 40.001 170.7 0.5986 | 1.579 1.961
50 15.06 39.67 49.22 50.001 180.4 0.6025 1.587 | 1.969
100 30.51 80.12 99.22 100.00 210.5 0.6102 | 1.602 1.984
TABLE VII
QD AND g VALUES FORn = 6
Qr [*N Q2 Qs Qr App. | 10log,q K, S g2 g3
0.6 ]| 0.006242 | 0.02986 | 0.05818 [| 0.64910 -9.933 0.02081 | 0.09954 | 0.1939
0.8 | 0.02132 | 0.09475 | 0.1767 0.85645 4.513 0.05330 | 0.2369 | 0.4417
1 0.04361 | 0.1808 | 0.3234 1.0484 15.05 0.08721 | 0.3617 | 0.6468
2 0.2241 0.7631 1.209 2.0254 49.37 0.2241 | 0.7631 1.209
3 0.4514 1.426 2.153 3.0171 70.14 0.3010 | 0.9506 | 1.435
5 0.9425 2.804 4.068 5.0103 96.57 0.3770 1.122 1.627
7 1.449 4.203 5.993 7.0073 114.1 0.4139 1.201 1.712
10 2.216 6.313 8.886 10.005 132.6 0.4432 1.263 1.777
15 3.503 9.839 13.71 15.003 153.7 0.4671 1.312 1.828
20 4.794 13.37 18.54 20.003 168.7 0.4794 1.337 1.854
30 7.379 20.44 28.20 30.002 189.9 0.4919 1.363 1.880
40 9.965 27.51 37.86 40.001 204.8 0.4983 1.375 1.893
50 12.55 34.58 47.51 50.001 216.5 0.5021 1.383 1.901
100 25.49 69.93 95.81 100.00 252.6 0.5098 1.399 1.916
TABLE VI
QD AND g4, VALUES FOR 12 = 7
Qr [*]\ Qs Qs Q4 Qr App. | 10log;o Kr g1 g2 g3 g4
0.6 || 0.003214 | 0.01836 | 0.04416 | 0.05802 || 0.67033 -9.632 0.01071 | 0.06120 | 0.1472 | 0.1934
0.8 || 0.01215 | 0.06351 | 0.1427 | 0.1827 0.86852 6.116 0.03038 | 0.1588 | 0.3568 | 0.4567
1 0.02697 | 0.1291 | 0.2719 | 0.3397 1.0571 18.06 0.05394 | 0.2581 | 0.5438 | 0.6793
2 0.1655 0.6141 1.084 1.270 2.0293 57.72 0.1655 | 0.6141 1.084 | 1.270
3 0.3526 1.188 1.960 2.251 3.0196 81.88 0.2351 | 0.7917 | 1.307 | 1.501
5 0.7673 2.394 3.745 4.236 5.0117 112.7 0.3069 | 0.9575 | 1.498 | 1.695
7 1.199 3.623 5.539 6.230 7.0084 133.1 0.3426 1.035 1.583 } 1.780
10 1.856 5.480 8.237 9.225 10.006 154.7 0.3713 1.096 1.647 | 1.845
15 2.961 8.588 12.74 14.22 15.004 179.4 0.3948 1.145 1.698 | 1.896
20 4.070 11.70 17.24 19.22 20.003 196.8 0.4070 1.170 1.724 | 1.922
30 6.291 17.93 26.25 29.22 30.002 221.5 0.4194 1.195 1.750 | 1.948
40 8.514 24.16 35.26 30.22 40.001 239.0 0.4257 1.208 1.763 | 1.961
50 10.74 30.40 44.27 49.22 50.001 252.5 0.4295 1.216 1.771 1.969
100 21.86 61.57 89.31 99.22 100.00 204.7 0.4372 1.231 1.786 | 1.984

corresponding individual resonator values for the maximallyThe LEP method begins with the lumped-element ladder
flat filter. With the individual resonata® values, the designer network shown in Fig. 5. The form of the response of this
is free to choose the resonator that is most appropriate for tetwork is
given application by relating the individual resonafpwvalues Py
to the parameters of the resonator. P, =(1+w?). (70)
The corresponding normalized element valugs £ L; or
Cy) are given by [3]

The method currently used for generating maximally flat
quarter-wavelength-coupled filters is briefly described, and it 5, — 2 sin {M} k=1,2, -, n. (71)
is pointed out why this method is only approximately correct. 2n

V. THE LUMPED-ELEMENT PROTOTYPE METHOD
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TABLE IX
QD AND g;, VALUES FORn = 8
Qr [ Q2 Qs [ Qr App. | 10logyy Kn 91 g2 g3 g4
0.6 [ 0.001657 | 0.01103 | 0.03156 | 0.05111 ]| 0.68671 -9.331 0.005523 | 0.03677 | 0.1052 | 0.1704
0.8 | 0.006956 | 0.04191 | 0.1098 | 0.1686 || 0.87768 7.719 0.01739 | 0.1048 [ 0.2745 | 0.4214
1 || 0.01679 [0.09128 | 0.2196 | 0.3209 || 1.0636 21.07 0.03358 | 0.1826 | 0.4392 [ 0.6417
2 0.1241 | 0.4962 | 0.9503 | 1.232 2.0321 66.06 0.1241 | 0.4962 | 0.9503 | 1.232
3 0.2802 | 0.9961 | 1.755 | 2.103 3.0214 93.62 0.1868 | 0.6641 | 1.170 | 1.462
5 0.6364 | 2.062 | 3.399 | 4.140 5.0129 128.8 0.2546 | 0.8247 | 1.359 | 1.656
7 1.012 3.153 | 5054 | 6.096 7.0092 152.1 0.2800 | 0.9009 | 1.444 | 1.742
10 1.585 4805 | 7.542 | 9.033 10.006 176.8 0.3171 | 09610 | 1.509 | 1.807
15 2.552 7571 | 1170 | 13.93 15.004 205.0 03402 | 1010 | 1559 | 1.858
20 3.523 10.34 | 15.85 | 1887 20.003 225.0 0.3523 | 1.034 | 1.585 | 1.884
30 5.469 1580 | 2416 | 2864 30.002 253.1 0.3646 | 1.060 | 1.611 | 1.909
40 7.418 2145 | 32.48 | 38.45 40.002 273.1 0.3709 | 1.072 | 1.624 | 1.922
50 9.367 27.00 | 40.79 | 4826 50.001 283.6 0.3747 | 1.080 | 1.632 | 1.930
100 | 19.12 54.78 | 82.36 | 97.30 100.00 336.8 0.3824 | 1.096 | 1.647 | 1.946
TABLE X
QDFORn = 9
Qr [ [ Qs Q4 Qs Qr App. | 10logo K,
0.6 ]| 0.0008545 | 0.006510 | 0.02163 | 0.04154 | 0.05113 ]| 0.69972 -9.030
0.8 [[ 0.003990 | 0.02732 | 0.08177 | 0.1452 | 0.1736 | 0.88487 9.322
1 0.01050 | 0.06410 | 0.1731 | 0.2858 | 0.3327 | 1.0688 24.08
2 0.09396 | 0.4028 [ 0.8256 | 1.151 1.268 2.0344 74.40
3 0.2255 08416 | 1.562 | 2071 | 2.250 3.0229 105.4
5 0.5354 1.791 3073 | 3935 | 4.236 5.0137 144.9
7 0.8659 2.769 4597 | 5.808 | 6.230 7.0098 171.1
10 1.374 4.253 6.880 | 8623 | 9.225 10.007 198.9
15 2.232 6.740 10.71 1332 | 1422 15.005 230.6
20 3.095 9.234 1454 | 18.01 19.22 20.003 253.1
30 4.827 14.23 2220 | 2741 | 29.22 30.002 284.8
40 6.561 19.22 2086 | 36.81 | 39.22 40.002 307.3
50 8.296 24.22 3752 | 46.20 | 49.22 50.001 324.7
100 16.98 49.22 75.82 | 93.19 | 99.22 100.00 378.9
TABLE XI and the resulting configuration is shown in Fig. 6. Theof
9k VALUES FORn = 9 each resonant section is relatedgioin (71) by
Qr 9 92 93 94 95 G
0.6 |] 0.002850 [ 0.02170 [ 0.07210 | 0.1385 | 0.1704 Qr =7 Qr (72)
0.8 || 0.009974 | 0.06831 | 0.2044 | 0.3631 | 0.4340 2
002010 | 0.1282 | 0.3461 } 0.5717 | 0.6655 and, in terms of QD, each individual resonator hag given
0.09396 | 0.4028 | 0.8256 | 1.151 | 1.268 by [7]

0.2142 0.7165 1.229 1.574 | 1.694
0.2474 0.7913 1.313 1.660 | 1.780 Qr = Qr sin |:
10 0.2748 0.8506 1.378 1.725 | 1.845
15 0.2976 0.8987 1.429 1.776 | 1.896
20 0.3095 0.9234 1.454 1.801 1.922

1

2

3 0.1503 0.5610 1.041 1.381 1.500

? (2k — )7
2n

}, k=12 -, n (73)

Unfortunately, (73) does not result in a maximally flat

30 || 03218 | 0.0485 | 1480 | 1827 | 1.948 response and does not give the correct t6falThe reason
40 || 03280 | 0.9612 | 1.493 | 1.840 | 1.961 is that the quarter-wavelength sections of transmission lines
50 || 0.3318 | 0.9689 | 1.501 | 1.848 | 1.969 contribute to the filter response. For high tolfilters, this

100 0.3395 0.9844 1.516 1.864 | 1.984

effect is not as noticeable, but for low toté} filters, this

selectivity causes ripples in the passband. In addition, since a

guarter-wavelength section of transmission line has selectivity,
The LEP is transformed to a bandpass prototype by usiiigdds to the? of the filter. Thus, the total) found using (73)

the low-pass-to-bandpass transformation in (2), which yiel@snot the correct total) value. It approaches the correct value

the response given in (3). To use quarter-wavelength couplimgply at high total? values. The QD method corrects both of

it is necessary to replace each series bandpass resondtese problems because it implicitly accounts for the selectivity

with a shunt bandpass resonator and a section of quariafrthe quarter-wavelength coupling lines. The results using the

wavelength transmission line on each side of the resonatbEP method versus the QD method are demonstrated by the

This equivalence was originally presented by Kuroda [16§xample in Section VI.
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TABLE XII
QDForRn = 10
Qr Q Qo Qs Q4 Qs Qr App. | 10log; Ky
0.6 ]| 0.0004413 T 0.003788 | 0.01436 | 0.03190 | 0.04645 | 0.71031 -8.729
0.8 ]| 0.002291 | 0.01762 | 0.05947 | 0.1196 | 0.1643 || 0.89067 10.93
1 0.006578 | 0.04473 | 0.1341 | 0.2457 [ 0.3206 1.0729 27.09
2 0.07172 0.3283 | 0.7144 1.055 1.244 2.0362 82.74
3 0.1833 0.7157 1.388 1.926 2.213 3.024 117.1
5 0.4555 1.569 2.780 3.692 4.174 5.0144 161.0
7 0.7499 2.453 4.185 5.468 6.143 7.0103 190.1
10 1.205 3.797 6.300 8.136 9.102 10.007 221.0
15 1.976 6.053 9.831 12.59 14.04 15.005 256.2
20 2.753 8.316 13.36 17.04 18.97 20.004 281.2
30 4.312 12.85 20.43 25.95 28.85 30.002 316.4
40 5.873 17.39 27.50 34.86 38.73 40.002 341.4
50 7.436 21.92 34.57 43.77 48.60 50.001 360.8
100 15.25 44.62 69.93 88.32 97.98 100.00 421.0
TABLE XIV
DESIGN SPECIFICATIONS
TABLE XIlI
gr VALUES FOR 7 = 10 Parameter Value
Qr g1 g2 g3 g4 gs n 5
0.6 [[ 0.001471 | 0.01263 [ 0.04786 | 0.1063 | 0.1548 Qr 2.0
0.8 |[ 0.005728 | 0.04406 { 0.1487 | 0.2990 | 0.4108 fo 1 GHz
1 0.01316 [ 0.08947 | 0.2682 | 0.4913 [ 0.6412 Le=Jy, =2y | 50 Q
2 0.07172 | 0.3283 | 0.7144 | 1.055 | 1.244
3 0.1222° | 04771 | 0.9256 | 1.284 | 1.475
5 0.1822 | 0.6274 | 1.112 | 1.477 | 1.670 TABLE XV
7 0.2143 0.7008 1.196 1.562 1.755 StuB IMPEDNACE VALUES USING THE LEP MeTHOD
10 0.2410 | 0.7593 | 1.260 | 1.627 | 1.820 -
15 || 0.2635 | 0.8070 | 1.311 | 1.678 | 1.872 i Qi Zgi
20 0.2753 | 0.8316 | 1.336 | 1.704 | 1.897 1] 0.6180 | 31.7700
30 0.2874 0.8566 1.362 1.730 | 1.923 211 1.6180 | 12.1351
40 0.2937 | 0.8692 | 1.375 | 1.743 | 1.936
50 0.2974 | 0.8769 | 1.383 | 1.751 | 1.944 3 [/ 2.0000)9.81748
100 || 0.3051 | 0.8924 | 1.399 | 1.766 | 1.960
TABLE XVI
Stu IMPEDANCE UING THE QD METHOD
VI. EXAMPLE COMPARING THE LEP AND QD METHODS 7 Q. o
This section compares the QD and LEP methods through 11 0.3097 | 63.3989 Q)
an example of designing a maximally flat five-section filter. In 2 [ 0.9483 | 20.7058 O
doing so, it is demonstrated how to implement both methods. 31 1.2772 | 15.3740 Q

Also, the results from both methods are compared and it is
pointed out that the LEP method yields a response that is not

truly r'nax.imally flat and a totad) which deviates significantly QTAE'C‘EP:(F:QLN
from its intended value.

LEP Method | QD Method
Q1 0.6180 0.3097
A. Design Specifications Qs 1.6180 0.9483
Following the example provided in Section IlI-H, a five- Qs 2-0000 1.2772
Qr 2.7855 2.0

section quarter-wavelength-coupled filter is created which has
a total , Qr = 2.0. For simplicity, quarter-wavelength
shorted-stub resonators that resonatéyat 1 GHz are used. lists the stub impedance values calculated using the LEP
This filter will be implemented with source and load impedmethod.
ances of 502 and with main transmission-line impedance For the QD method, Table VI is used with the index value
Zo = 50 Q. Table XIV lists the design parameter specificaef ) = 2.0 to find each();. Note that thesey, values
tions. The circuit layout is shown in Fig. 7. match those given in Table Il from Section IlI-H. With these
To build the filter using the LEP method, (73) is used t@); values, (43) is again used to calculate the stub impedance
calculate the appropriate values f@¢. Then, (43) is used to values. Table XVI gives the stub impedance values calculated
convert thes&); values into stub impedance values. Table X\sing the QD method.
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Fig. 7. Five-section filter using quarter-wavelength shorted-stubs.

B. Comparison of the Results

Table XVII compares the individual resonat@rvalues for
each method. Also, Table XVII shows the value@f found
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Fig. 9. Comparison of the 3-dB points for the QD and LEP methods.

the distribution of individual@} values is returned to the
designer. With this, the actual choice of resonator is arbitrary.
A five-section filter example was used to demonstrate both
the validity of the QD method and the problems with the LEP
method.

from the actual filter response. These values were found by
locating the upper and lower 3-dB frequencies and then using
(51) to calculat&). Figs. 8 and 9 compare the filter response 1
of the two methods. Notice that in Fig. 8 the QD method isp)
completely flat in the passband and that the LEP method has
ripples in the passband. Fig. 9 shows the upper and lower s
dB frequencies used to calculatgr in Table XVII. Overall,

the response using the QD method is practically exact where#d
the response using the LEP method significantly deviates from
the ideal maximally flat response. [5]

VII. CONCLUSION [6]

This paper has presented a technique for accurately de-
signing maximally flat quarter-wavelength-coupled filters. Thed7]
current method used—the LEP method—which is based 0B
the lumped-element low-pass prototype network, inaccurately
predicts the value for the totaD of the filter and yields a
response that is not truly maximally flat. In this paper, the
technique presented (called the QD method) corrects both[td]
these problems. With the QD method, the designer chooses
the number of resonant sections and the tQtdbr the filter. ;1
Using the tables provided or following the method presented,
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